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History of Altreonic

 Eonic (Eric Verhulst): 1989 – 2001

 Developed Virtuoso a Parallel RTOS (sold to Wind River 
Systems);

 Communicating Sequential Processes as foundation of 
the “pragmatic superset of CSP”;

 Open License Society: 2004 – now

 R&D on Systems and Software Engineering;

 Developed OpenComRTOS using Formal Methods

 Altreonic: 2008 – now

 Commercialises OpenComRTOS;

 Based in Linden (near Leuven) Belgium; 
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Why Scalability is needed

• Building robots / systems out of smart sensors and 
actuators. 

• Central control moves towards distributed control. 

429 August 2011



Scalability / Distribution

 Application Domains:

 Multi sensor fusion, 

 Image processing, 

 radar, sonar

 Applications can utilize additional resources. 

 Additional CPU-Cores

 Additional communication links

 Potential problems of Distributed Control:

 Design complexity increases

 Probability of failure increases
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OpenComRTOS

• Supported Targets

• OpenComRTOS Designer

• Open Tracer

• Open System Inspector

• Safe Virtual Machine

• Springer book:

Formal Development of a Network-Centric RTOS

Software Engineering for Reliable Embedded Systems

Verhulst, E., Boute, R.T., Faria, J.M.S., Sputh, B.H.C., Mezhuyev, V.
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Supported Targets

• Host Operating Systems:

• MS-Windows 32

• POSIX 32 (Linux 2.6 / 3.0)

• Native Support:

• ARM-Cortex-M3

• PowerPC e600

• TI C66x

• XMOS XS1

• Dormant Ports: Xilinx Microblaze, ESA Leon3 , 
MLX16, NXP CoolFlux, 
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OpenComRTOS Designer

 OpenComRTOS Designer, offers to:

 Use 1 – 224 Nodes (CPU-Cores) in one System.

 Support heterogeneous systems.

 Use different communication technologies between 
Processing-Nodes (RS232, Ethernet, PCIe, RapidIO, 
etc.) 

 Paradigms:

 Interacting Entities

 Virtual Single Processor (VSP) Programming Model

 Distributed Real Time Support
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OCR Designer Meta Models

<platform type="arm-cortex-m3" variant="arm-cortex-m3" svgPath="chip.svg" 

version="1.5" help="OpenVE::OpenComRTOS::Node">

<attribute name="name" type="string" unique="node" regexp="[A-Za-z0-9_]+"/>

<deviceDriver name="ethernetUip">

<includeFile name="driver/stellarisEthernet.h"/>

<structure type="stellarisEthernetDevice" label="dev“>

<attribute name="name" type="string" regexp="eth0" defaultValue="eth0"   

unique="deviceDriver"/>

<attribute name="netmask" defaultValue="255.255.255.0" type="string"      

regexp=“…"/>

<attribute name="defaultGw" defaultValue="0.0.0.0" type="string" 

regexp=“…"/>

<attribute name="host" type="string" regexp=“…"/>

</structure>

<task name="rtxmitTask">

<entrypoint value="stellarisEthernet_rtxmitTask"/>

…

</task>

<task name="txTask“>

<entrypoint value="stellarisEthernet_EntryPoint"/>

</task>

<event name="ethernetEvent"/>

<event name="timerEvent"/>

<lib name="driver"/>

<initFunctionDevice name="stellarisEthernet_initDevice"/>

…

</deviceDriver></platform>

29 August 2011 9



Interacting Entities

• Entities:

• Active Entities (Tasks)

• Passive Entities (Hubs)

• Interactions:

• Service Requests from a Task to a Hub;

• Represented by packet exchanges, not function calls!

• Have the following interaction semantics:

• _W: waiting / blocking

• _NW: non waiting

• _WT: waiting with timeout

• _A: asynchronous
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Available Passive Entities (Hubs)

• Port: Data exchange between Tasks

• Event: Boolean signal

• Semaphore: Counting Event

• Resource: Mutual Exclusion (Mutex / Lock)

• Provides distributed Priority Inheritance. 

• FIFO: Buffered data exchange between Tasks

• Memory Pool: Dynamic allocation of memory-blocks.
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Generic Hub Model

29 August 2011 12



Virtual Single Processor 

Separates two areas of concern:

• Hardware Configuration (Topology View)

• Application Configuration (Application View)

Benefits:

• Transparent parallel programming

• System wide priority management
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Virtual Single Processor II

Topology View consists of:

• Nodes (CPU-Cores)

• Links:

• Prioritized packet communication between Nodes)

1429 August 2011



Virtual Single Processor III 

Application View, consists of the following entities:

• Tasks 

• Hubs

• Interactions, OpenComRTOS routes them to their destination 
Entity. 

1529 August 2011



Virtual Single Processor IV

Topology Diagram Entities are represented by meta
models (XML-based), which contain the information
about the following:

• CPU-Core(s) (type, interconnect, compiler, …)

• Devices and their Device Drivers

• Link-Ports

• File Templates for Node Entry Point (main()). 

• Hierarchy information (SoC, board, rack, cluster) 

This makes it easy to deal with complex SoCs such as 
the TMS320C6678 or the MPC8640D.
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Open Tracer

Visualizes: Context Switches, Hub Interactions, Packet 
exchanges between Nodes.
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Open System Inspector

Allows, to inspect and modify the state of the system during runtime:

- Monitoring of the Hub state

- Peek and Poke of memory regions

- Starting and Stopping of Tasks.
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Safe Virtual Machine

• Goals:
• CPU independent programming
• Low memory needs (embedded!)
• Mobile, dynamic code => “embedded apps”
• Allows to reuse legacy binary code on any processor
• Formal development approach (SVM is generated from description)

• Results:
• Selected ARM Thumb1 instruction set of VM target

• Widely used CPU

• < 3 Kbytes of code for VM

• Executes binary compiled code

• Capable of native execution on ARM targets

• VM enhanced with safety support (option):

• Memory violations

• Stack violations

• Numerical exceptions
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SVM System Composition
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Demonstrations

• Single Node Semaphore Loop

• Multi Node Semaphore Loop

• Open Tracer

• Protecting a Shared Resource

• Open System Inspector

• Safe Virtual Machine for C

• Interrupt Latency

• eWheel Controller Simulation
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Single Node Semaphore Loop

Goal: Implementing a Semaphore Loop:

1. Create a Topology with one Win32 Node;

2. Create two Tasks; 

3. Create two Semaphore Hubs;

4. Establish the Interactions between Tasks and Hubs;

5. Compile the project;

6. Execute the project.
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Multi Node Semaphore Loop

Goal: Execute the Semaphore Loop distributed over 
two Nodes:

1. Extend the Topology by an addition Node:

2. Add an ARM Node

3. Add a connection between the ARM and Win32 
nodes

4. Map one Task and one Hub onto the new ARM 
Node

5. Compile Project

6. Flash ARM node and Execute
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Properties of the ARM Node

• Based on Luminary Micro LM3S6965.

• ARM-Cortex-M3 @ 50MHz

• 64kB RAM

• 256kB Flash

• Communicating  either via:

• RS232 @ 921600bps

• 100Mbps Ethernet (TCP-IP)
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Open Tracer

Goal: Obtain a trace from the Semaphore Loop 
running on the ARM and Windows:

• Add a Stdio-Host-Server to the Win32 Node.

• Write the contents of the ARM Node trace buffer onto 
the disk of the Win32 Node.

• Write the contents of the Win32 Node trace buffer 
onto the disk of the Win32 Node.

• Display the Trace using OpenTracer.
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Open System Inspector

• Goal: Investigate and influence the State of the 
System during runtime:

• Starting from the `Distributed Semaphore Loop' 
example

• Add two OSI-Server components, one for each Node.

• Add a OSI-Relay component to the Win32-Node.

• Build and run 

• Start the Open System Inspector (OSI) and load the 
project. 

• Investigate the state of the system and influence it.
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Protecting a Shared Resource

Goal: share one Screen between an ARM Node and a 
Windows Node:

• Insert a Resource, which provides mutual exclusive 
access to the StdioHostServer.

• Claim the Resource using L1_LockResource_W() 
before accessing the StdioHostServer.

• Release the Resource by calling 
L1_UnlockResource_W()
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Safe Virtual Machine for C

Goal: Make Tasks loadable during runtime, and have a 
standard binary format for them (ARM Thumb-1)

• Starting from the `Single Node Semaphore Loop' 
example

• Add an SVM node to the Topology Diagram

• Add an SVM-Component to the Application Diagram 
and map it to the Win32-Node, this is the VM.

• Map one of the tasks to the Node called `svm'. Thus 
now it will be compiled into an ARM-Thumb1 binary

• Modify a native task to load the binary image 
(Taskname.bin), and then start the VM.
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Interrupt Latency

This demo measures two separate latencies using the 
Timer IRQ:

• IRQ to ISR --- How long does it take after an IRQ 
occurred until the first useful statement in the ISR 
gets executed.

• IRQ to Task --- How long does it take after an IRQ 
occurred until the first useful statements in the Task 
handling this IRQ gets executed.
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eWheel Controller Simulation

This demonstration simulates a Segway type wheel, 
and consists of the following parts:

• eWheel Visualisation

• eWheel Controller

• Physical Model
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Performance

• Code-size Figures

• Task switching Figures

• Interrupt Latency 
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OCR Code-size Figures

CPU Type Codesize

ARM-Cortex-M3 2.5 – 4.0kB

XMOS-XS1 5.0 – 7.5kB 

PowerPC e600 7.1 – 9.8kB

TI-C66x (DSP) 5.1 – 7.7kB
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Code-size depends on the application, the system automatically 

removes unused services.



Task Switching Figures

Memory Loop Time

ARM-Cortex-M3 internal 2360 cycles

XMOS-XS1 internal 2130 cycles

PowerPC e600 Simulator (psim) 1638 cycles

TI C66x (DSP) L2-SRAM 4470 cycles
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Interrupt Latency Measurement

• IRQ 2 ISR: The time that elapsed between the IRQ and the first useful 
instruction of the ISR.

• IRQ 2 Task: The time that elapsed between the IRQ and the first useful 
instruction of a Task triggered by the ISR. 
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Interrupt Latency Figures

Memory IRQ 2 ISR IRQ 2 Task

ARM-Cortex-

M3

internal 15 – 81; 

(50%: 20)

600 – 1200;

(50%: 800)

XMOS-XS1 internal 73 – 142;

(50%: 88)

600 – 1100;

(50%: 700)

PowerPC e600 Simulator 70 896 

TI C66x (DSP) L2-SRAM 136 1367
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• IRQ 2 ISR: The time that elapsed between the IRQ and the 
first useful instruction of the ISR.

• IRQ 2 Task: The time that elapsed between the IRQ and the 
first useful instruction of a Task triggered by the ISR. 

29 August 2011



IRQ 2 ISR on XMOS 100MHz
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IRQ 2 Task on XMOS 100MHz
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Conclusions

 OpenComRTOS Designer allows you to master the 
complexity of distributed heterogeneous systems. 

 OpenComRTOS has a small memory foot-print.

 OpenComRTOS has a high performance. 

 Trace information from embedded targets can be obtained 
without using expensive instrumentation.

 Open System Inspector allows to inspect a running system.
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Questions?
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“If it doesn't work, it must be art.

If it does, it was real engineering”
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Thank You for your attention
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