
Push Button High Reliability

From Deep Space to Deep Sea

Scalable embedded Realtime

with OpenComRTOS

Bernhard H.C. Sputh

bernhard.sputh@altreonic.com,

http://www.altreonic.com

Outline

• History of Altreonic

• Scalability / Distribution

• OpenComRTOS

• Demonstrations

• Performance

• Conclusions

229 August 2011

History of Altreonic

 Eonic (Eric Verhulst): 1989 – 2001

 Developed Virtuoso a Parallel RTOS (sold to Wind River
Systems);

 Communicating Sequential Processes as foundation of
the “pragmatic superset of CSP”;

 Open License Society: 2004 – now

 R&D on Systems and Software Engineering;

 Developed OpenComRTOS using Formal Methods

 Altreonic: 2008 – now

 Commercialises OpenComRTOS;

 Based in Linden (near Leuven) Belgium;

329 August 2011

Why Scalability is needed

• Building robots / systems out of smart sensors and
actuators.

• Central control moves towards distributed control.

429 August 2011

Scalability / Distribution

 Application Domains:

 Multi sensor fusion,

 Image processing,

 radar, sonar

 Applications can utilize additional resources.

 Additional CPU-Cores

 Additional communication links

 Potential problems of Distributed Control:

 Design complexity increases

 Probability of failure increases

529 August 2011

OpenComRTOS

• Supported Targets

• OpenComRTOS Designer

• Open Tracer

• Open System Inspector

• Safe Virtual Machine

• Springer book:

Formal Development of a Network-Centric RTOS

Software Engineering for Reliable Embedded Systems

Verhulst, E., Boute, R.T., Faria, J.M.S., Sputh, B.H.C., Mezhuyev, V.

29 August 2011 6

Supported Targets

• Host Operating Systems:

• MS-Windows 32

• POSIX 32 (Linux 2.6 / 3.0)

• Native Support:

• ARM-Cortex-M3

• PowerPC e600

• TI C66x

• XMOS XS1

• Dormant Ports: Xilinx Microblaze, ESA Leon3 ,
MLX16, NXP CoolFlux,

29 August 2011 7

OpenComRTOS Designer

 OpenComRTOS Designer, offers to:

 Use 1 – 224 Nodes (CPU-Cores) in one System.

 Support heterogeneous systems.

 Use different communication technologies between
Processing-Nodes (RS232, Ethernet, PCIe, RapidIO,
etc.)

 Paradigms:

 Interacting Entities

 Virtual Single Processor (VSP) Programming Model

 Distributed Real Time Support

829 August 2011

OCR Designer Meta Models

<platform type="arm-cortex-m3" variant="arm-cortex-m3" svgPath="chip.svg"

version="1.5" help="OpenVE::OpenComRTOS::Node">

<attribute name="name" type="string" unique="node" regexp="[A-Za-z0-9_]+"/>

<deviceDriver name="ethernetUip">

<includeFile name="driver/stellarisEthernet.h"/>

<structure type="stellarisEthernetDevice" label="dev“>

<attribute name="name" type="string" regexp="eth0" defaultValue="eth0"

unique="deviceDriver"/>

<attribute name="netmask" defaultValue="255.255.255.0" type="string"

regexp=“…"/>

<attribute name="defaultGw" defaultValue="0.0.0.0" type="string"

regexp=“…"/>

<attribute name="host" type="string" regexp=“…"/>

</structure>

<task name="rtxmitTask">

<entrypoint value="stellarisEthernet_rtxmitTask"/>

…

</task>

<task name="txTask“>

<entrypoint value="stellarisEthernet_EntryPoint"/>

</task>

<event name="ethernetEvent"/>

<event name="timerEvent"/>

<lib name="driver"/>

<initFunctionDevice name="stellarisEthernet_initDevice"/>

…

</deviceDriver></platform>

29 August 2011 9

Interacting Entities

• Entities:

• Active Entities (Tasks)

• Passive Entities (Hubs)

• Interactions:

• Service Requests from a Task to a Hub;

• Represented by packet exchanges, not function calls!

• Have the following interaction semantics:

• _W: waiting / blocking

• _NW: non waiting

• _WT: waiting with timeout

• _A: asynchronous

1029 August 2011

Available Passive Entities (Hubs)

• Port: Data exchange between Tasks

• Event: Boolean signal

• Semaphore: Counting Event

• Resource: Mutual Exclusion (Mutex / Lock)

• Provides distributed Priority Inheritance.

• FIFO: Buffered data exchange between Tasks

• Memory Pool: Dynamic allocation of memory-blocks.

1129 August 2011

Generic Hub Model

29 August 2011 12

Virtual Single Processor

Separates two areas of concern:

• Hardware Configuration (Topology View)

• Application Configuration (Application View)

Benefits:

• Transparent parallel programming

• System wide priority management

1329 August 2011

Virtual Single Processor II

Topology View consists of:

• Nodes (CPU-Cores)

• Links:

• Prioritized packet communication between Nodes)

1429 August 2011

Virtual Single Processor III

Application View, consists of the following entities:

• Tasks

• Hubs

• Interactions, OpenComRTOS routes them to their destination
Entity.

1529 August 2011

Virtual Single Processor IV

Topology Diagram Entities are represented by meta
models (XML-based), which contain the information
about the following:

• CPU-Core(s) (type, interconnect, compiler, …)

• Devices and their Device Drivers

• Link-Ports

• File Templates for Node Entry Point (main()).

• Hierarchy information (SoC, board, rack, cluster)

This makes it easy to deal with complex SoCs such as
the TMS320C6678 or the MPC8640D.

29 August 2011 16

Open Tracer

Visualizes: Context Switches, Hub Interactions, Packet
exchanges between Nodes.

29 August 2011 17

Open System Inspector

Allows, to inspect and modify the state of the system during runtime:

- Monitoring of the Hub state

- Peek and Poke of memory regions

- Starting and Stopping of Tasks.

29 August 2011 18

Safe Virtual Machine

• Goals:
• CPU independent programming
• Low memory needs (embedded!)
• Mobile, dynamic code => “embedded apps”
• Allows to reuse legacy binary code on any processor
• Formal development approach (SVM is generated from description)

• Results:
• Selected ARM Thumb1 instruction set of VM target

• Widely used CPU

• < 3 Kbytes of code for VM

• Executes binary compiled code

• Capable of native execution on ARM targets

• VM enhanced with safety support (option):

• Memory violations

• Stack violations

• Numerical exceptions

29 August 2011 19

SVM System Composition

29 August 2011 20

Network infrastructure

Demonstrations

• Single Node Semaphore Loop

• Multi Node Semaphore Loop

• Open Tracer

• Protecting a Shared Resource

• Open System Inspector

• Safe Virtual Machine for C

• Interrupt Latency

• eWheel Controller Simulation

29 August 2011 21

Single Node Semaphore Loop

Goal: Implementing a Semaphore Loop:

1. Create a Topology with one Win32 Node;

2. Create two Tasks;

3. Create two Semaphore Hubs;

4. Establish the Interactions between Tasks and Hubs;

5. Compile the project;

6. Execute the project.

29 August 2011 22

Multi Node Semaphore Loop

Goal: Execute the Semaphore Loop distributed over
two Nodes:

1. Extend the Topology by an addition Node:

2. Add an ARM Node

3. Add a connection between the ARM and Win32
nodes

4. Map one Task and one Hub onto the new ARM
Node

5. Compile Project

6. Flash ARM node and Execute

29 August 2011 23

Properties of the ARM Node

• Based on Luminary Micro LM3S6965.

• ARM-Cortex-M3 @ 50MHz

• 64kB RAM

• 256kB Flash

• Communicating either via:

• RS232 @ 921600bps

• 100Mbps Ethernet (TCP-IP)

29 August 2011 24

Open Tracer

Goal: Obtain a trace from the Semaphore Loop
running on the ARM and Windows:

• Add a Stdio-Host-Server to the Win32 Node.

• Write the contents of the ARM Node trace buffer onto
the disk of the Win32 Node.

• Write the contents of the Win32 Node trace buffer
onto the disk of the Win32 Node.

• Display the Trace using OpenTracer.

29 August 2011 25

Open System Inspector

• Goal: Investigate and influence the State of the
System during runtime:

• Starting from the `Distributed Semaphore Loop'
example

• Add two OSI-Server components, one for each Node.

• Add a OSI-Relay component to the Win32-Node.

• Build and run

• Start the Open System Inspector (OSI) and load the
project.

• Investigate the state of the system and influence it.

29 August 2011 26

Protecting a Shared Resource

Goal: share one Screen between an ARM Node and a
Windows Node:

• Insert a Resource, which provides mutual exclusive
access to the StdioHostServer.

• Claim the Resource using L1_LockResource_W()
before accessing the StdioHostServer.

• Release the Resource by calling
L1_UnlockResource_W()

29 August 2011 27

Safe Virtual Machine for C

Goal: Make Tasks loadable during runtime, and have a
standard binary format for them (ARM Thumb-1)

• Starting from the `Single Node Semaphore Loop'
example

• Add an SVM node to the Topology Diagram

• Add an SVM-Component to the Application Diagram
and map it to the Win32-Node, this is the VM.

• Map one of the tasks to the Node called `svm'. Thus
now it will be compiled into an ARM-Thumb1 binary

• Modify a native task to load the binary image
(Taskname.bin), and then start the VM.

29 August 2011 28

Interrupt Latency

This demo measures two separate latencies using the
Timer IRQ:

• IRQ to ISR --- How long does it take after an IRQ
occurred until the first useful statement in the ISR
gets executed.

• IRQ to Task --- How long does it take after an IRQ
occurred until the first useful statements in the Task
handling this IRQ gets executed.

29 August 2011 29

eWheel Controller Simulation

This demonstration simulates a Segway type wheel,
and consists of the following parts:

• eWheel Visualisation

• eWheel Controller

• Physical Model

29 August 2011 30

Performance

• Code-size Figures

• Task switching Figures

• Interrupt Latency

3129 August 2011

OCR Code-size Figures

CPU Type Codesize

ARM-Cortex-M3 2.5 – 4.0kB

XMOS-XS1 5.0 – 7.5kB

PowerPC e600 7.1 – 9.8kB

TI-C66x (DSP) 5.1 – 7.7kB

3229 August 2011

Code-size depends on the application, the system automatically

removes unused services.

Task Switching Figures

Memory Loop Time

ARM-Cortex-M3 internal 2360 cycles

XMOS-XS1 internal 2130 cycles

PowerPC e600 Simulator (psim) 1638 cycles

TI C66x (DSP) L2-SRAM 4470 cycles

3329 August 2011

Interrupt Latency Measurement

• IRQ 2 ISR: The time that elapsed between the IRQ and the first useful
instruction of the ISR.

• IRQ 2 Task: The time that elapsed between the IRQ and the first useful
instruction of a Task triggered by the ISR.

3429 August 2011

Interrupt Latency Figures

Memory IRQ 2 ISR IRQ 2 Task

ARM-Cortex-

M3

internal 15 – 81;

(50%: 20)

600 – 1200;

(50%: 800)

XMOS-XS1 internal 73 – 142;

(50%: 88)

600 – 1100;

(50%: 700)

PowerPC e600 Simulator 70 896

TI C66x (DSP) L2-SRAM 136 1367

35

• IRQ 2 ISR: The time that elapsed between the IRQ and the
first useful instruction of the ISR.

• IRQ 2 Task: The time that elapsed between the IRQ and the
first useful instruction of a Task triggered by the ISR.

29 August 2011

IRQ 2 ISR on XMOS 100MHz

3629 August 2011

IRQ 2 Task on XMOS 100MHz

3729 August 2011

Conclusions

 OpenComRTOS Designer allows you to master the
complexity of distributed heterogeneous systems.

 OpenComRTOS has a small memory foot-print.

 OpenComRTOS has a high performance.

 Trace information from embedded targets can be obtained
without using expensive instrumentation.

 Open System Inspector allows to inspect a running system.

29 August 2011 38

39

Questions?

29 August 2011

“If it doesn't work, it must be art.

If it does, it was real engineering”

40

Thank You for your attention

29 August 2011

